Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.308
Filtrar
1.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561223

RESUMO

Glomerular filtration relies on the type IV collagen (ColIV) network of the glomerular basement membrane, namely, in the triple helical molecules containing the α3, α4, and α5 chains of ColIV. Loss of function mutations in the genes encoding these chains (Col4a3, Col4a4, and Col4a5) is associated with the loss of renal function observed in Alport syndrome (AS). Precise understanding of the cellular basis for the patho-mechanism remains unknown and a specific therapy for this disease does not currently exist. Here, we generated a novel allele for the conditional deletion of Col4a3 in different glomerular cell types in mice. We found that podocytes specifically generate α3 chains in the developing glomerular basement membrane, and that its absence is sufficient to impair glomerular filtration as seen in AS. Next, we show that horizontal gene transfer, enhanced by TGFß1 and using allogenic bone marrow-derived mesenchymal stem cells and induced pluripotent stem cells, rescues Col4a3 expression and revive kidney function in Col4a3-deficient AS mice. Our proof-of-concept study supports that horizontal gene transfer such as cell fusion enables cell-based therapy in Alport syndrome.


Assuntos
Nefrite Hereditária , Podócitos , Camundongos , Animais , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Podócitos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Membrana Basal Glomerular/metabolismo , Células-Tronco/metabolismo
2.
Zhonghua Yi Xue Za Zhi ; 104(16): 1347-1350, 2024 Apr 23.
Artigo em Chinês | MEDLINE | ID: mdl-38644281

RESUMO

Alport syndrome is one of the most common inherited kidney diseases caused by mutations in the type Ⅳ collagen genes. It has a complex pattern of inheritance and diverse clinical manifestations, and severe cases will rapidly progress to end-stage kidney disease. With the rapid development of genetic testing technology, there is a deeper understanding of the genetic spectrum of Alport syndrome, the effectiveness of clinical therapies, and the prediction of disease prognosis. Therefore, the purpose of the article is to introduce the advances in the diagnosis and treatment of Alport syndrome, aiming to improve the early diagnosis and standardized treatment of this disease.


Assuntos
Colágeno Tipo IV , Mutação , Nefrite Hereditária , Nefrite Hereditária/terapia , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Humanos , Colágeno Tipo IV/genética , Testes Genéticos , Prognóstico , Falência Renal Crônica/terapia , Falência Renal Crônica/genética , Falência Renal Crônica/diagnóstico
3.
BMJ Open ; 14(3): e075138, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490657

RESUMO

INTRODUCTION: Alport syndrome (AS) is one of the most common fatal hereditary renal diseases in human, with a high risk of progressing to end-stage renal disease without effective treatments. Mesenchymal stem cells (MSCs) have recently emerged as a promising therapeutic strategy for chronic kidney disease. However, the safety and therapeutic potential of MSC transfusion for patients with AS are still need to be confirmed. Therefore, we have designed a clinical trial to evaluate the hypothesis that intravenous infusion of human umbilical cord-derived MSC (hUC-MSC) is safe, feasible, and well-tolerated in children with AS. METHODS AND ANALYSIS: We report the protocol of the first prospective, open-label, single-arm clinical trial to evaluate the safety and preliminary efficacy of hUC-MSC transfusion in children with early-stage AS. Paediatric patients diagnosed with AS who have persistent albuminuria will be candidates for screening. Twelve eligible patients are planned to recruit and will receive hUC-MSC infusions under close safety monitoring, and complete the efficacy assessments at scheduled follow-up visits. The primary endpoints include the occurrence of adverse events to assess safety and the albuminuria level for efficacy evaluation. Secondary endpoint assessments are based on haematuria and glomerular filtration measurements. Each patient's efficacy endpoints will be evaluated against their baseline levels. Additionally, the underlying mechanism of hUC-MSC therapy will be explored through transcriptomic and proteomic analysis of blood and urine samples. ETHICS AND DISSEMINATION: The protocol (V.1.0, date 17 January 2015) was approved by the institutional review board of the Affiliated Taihe Hospital of Hubei University of Medicine (ethical approval 03 March 2015). Written informed consent will be obtained from the patient and/or guardians before study specific process. In addition to publication in a peer-reviewed scientific journal, a lay summary of study will be available for participants and the public on the Chinese Organization for Rare Disorders website (http://www.cord.org.cn/). TRIAL REGISTRATION NUMBER: ISRCTN62094626.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Nefrite Hereditária , Humanos , Criança , SARS-CoV-2 , Nefrite Hereditária/complicações , Nefrite Hereditária/terapia , Albuminúria , Estudos Prospectivos , Proteômica , Resultado do Tratamento , Células-Tronco Mesenquimais/fisiologia , Cordão Umbilical
4.
Turk J Pediatr ; 66(1): 128-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523389

RESUMO

BACKGROUND: Relapses or new-onset IgA nephropathy (IgAN) have been documented in patients after vaccination against SARS-CoV-2; however, only one adult patient has been reported in whom pre-existing IgAN worsened during coronavirus disease 2019 (COVID-19). CASE: We present the first pediatric case with biopsy-proven IgAN and genetically confirmed Alport syndrome, who developed end-stage kidney disease after an exacerbation of IgAN associated with COVID-19. The patient`s basal serum creatinine was 0.7-0.9 mg/dL before infection. He had not been vaccinated against COVID-19. He was admitted to the hospital with edema, hypertension, an elevated serum creatinine of 4.7 mg/ dL, and massive proteinuria. Three months before admission, he had been admitted to another hospital with COVID -19 and an elevated serum creatinine (1.9 mg/dL), but no biopsy had been performed at that time. The kidney biopsy revealed IgAN with 50% fibrocellular crescents with sclerosed glomeruli, tubular atrophy, and interstitial fibrosis. His serum creatinine did not decrease even after five administrations of pulse steroids, and hemodialysis was initiated. CONCLUSION: In conclusion, COVID -19 may pose a high risk for exacerbation of pre-existing glomerular disease. It is therefore necessary to closely monitor the kidney function of patients with underlying glomerulonephritis during and after COVID-19 and consider an early biopsy if serum creatinine does not return to baseline levels. In addition, this case report highlights the clinical importance of the co-occurence of IgAN and Alport syndrome.


Assuntos
COVID-19 , Glomerulonefrite por IGA , Glomerulonefrite , Nefrite Hereditária , Masculino , Adulto , Humanos , Criança , Glomerulonefrite por IGA/complicações , Glomerulonefrite por IGA/diagnóstico , Nefrite Hereditária/complicações , Creatinina , COVID-19/complicações , SARS-CoV-2 , Doença Aguda
5.
Mol Genet Genomic Med ; 12(3): e2406, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433557

RESUMO

BACKGROUND: Alport syndrome (AS) is a genetically heterogeneous disorder resulting from mutations in the collagen IV genes COL4A3, COL4A4, and COL4A5. The genetic diagnosis of AS is very important to make precise diagnosis and achieve optimal outcomes. METHODS: In this study, 16 Chinese families with suspected AS were recruited after pedigree analysis, and the clinical presentations were analyzed by a nephrologist. The genetic diagnosis was performed by whole-exome sequencing (WES) and the disease-causing variants were confirmed by Sanger sequencing. RESULTS: The cohort of probands included seven men and nine women, with a mean age of 19.9 years. Pathological analysis showed slight-to-moderate mesangial proliferation, and thin basement membrane was the main findings. Pathogenic variants were revealed by WES in each family, and the co-segregation with renal presentation was confirmed by PCR. In addition, RT-PCR analysis showed that the intronic variant led to aberrant splicing. CONCLUSION: Our findings expand the spectrum of AS gene variation, which will inform genetic diagnosis and add to the theoretical basis for the prevention of AS.


Assuntos
Nefrite Hereditária , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Povo Asiático/genética , China , Colágeno Tipo IV/genética , Rim , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética
7.
JCI Insight ; 9(6)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516889

RESUMO

Here, we used digital spatial profiling (DSP) to describe the glomerular transcriptomic signatures that may characterize the complex molecular mechanisms underlying progressive kidney disease in Alport syndrome, focal segmental glomerulosclerosis, and membranous nephropathy. Our results revealed significant transcriptional heterogeneity among diseased glomeruli, and this analysis showed that histologically similar glomeruli manifested different transcriptional profiles. Using glomerular pathology scores to establish an axis of progression, we identified molecular pathways with progressively decreased expression in response to increasing pathology scores, including signal recognition particle-dependent cotranslational protein targeting to membrane and selenocysteine synthesis pathways. We also identified a distinct signature of upregulated and downregulated genes common to all the diseases investigated when compared with nondiseased tissue from nephrectomies. These analyses using DSP at the single-glomerulus level could help to increase insight into the pathophysiology of kidney disease and possibly the identification of biomarkers of disease progression in glomerulopathies.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrite Hereditária , Insuficiência Renal Crônica , Humanos , Transcriptoma , Glomérulos Renais/patologia , Glomerulosclerose Segmentar e Focal/patologia , Nefrite Hereditária/patologia , Insuficiência Renal Crônica/metabolismo
8.
Curr Opin Nephrol Hypertens ; 33(3): 283-290, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477333

RESUMO

PURPOSE OF REVIEW: With the latest classification, variants in three collagen IV genes, COL4A3 , COL4A4 , and COL4A5 , represent the most prevalent genetic kidney disease in humans, exhibiting diverse, complex, and inconsistent clinical manifestations. This review breaks down the disease spectrum and genotype-phenotype correlations of kidney diseases linked to genetic variants in these genes and distinguishes "classic" Alport syndrome (AS) from the less severe nonsyndromic genetically related nephropathies that we suggest be called "Alport kidney diseases". RECENT FINDINGS: Several research studies have focused on the genotype-phenotype correlation under the latest classification scheme of AS. The historic diagnoses of "benign familial hematuria" and "thin basement membrane nephropathy" linked to heterozygous variants in COL4A3 or COL4A4 are suggested to be obsolete, but instead classified as autosomal AS by recent expert consensus due to a significant risk of disease progression. SUMMARY: The concept of Alport kidney disease extends beyond classic AS. Patients carrying pathogenic variants in any one of the COL4A3/A4/A5 genes can have variable phenotypes ranging from completely normal/clinically unrecognizable, hematuria without or with proteinuria, or progression to chronic kidney disease and kidney failure, depending on sex, genotype, and interplays of other genetic as well as environmental factors.


Assuntos
Nefrite Hereditária , Humanos , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Hematúria/genética , Rim/patologia , Colágeno Tipo IV/genética , Mutação
9.
Arch Iran Med ; 27(1): 8-14, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431955

RESUMO

BACKGROUND: Hereditary nephritis (HN), including Alport syndrome (AS) and thin basement membrane nephropathy (TBMN), is a rare genetic cause of hematuria. A definitive diagnosis requires electron microscopy (EM). Therefore, the clinical characteristics of these conditions are less known. This study aimed to determine the percentage and clinicopathological features of HN in patients from a referral center in Iran. METHODS: We checked kidney biopsy reports from 2007 to 2021 and extracted cases with HN. Fresh specimens of the cases diagnosed in the last two years were stained by immunofluorescence (IF) for collagen type IV alpha chains. EM findings in these cases were re-evaluated and categorized as diffuse glomerular basement membrane (GBM) thinning, definite, and suspicious features of AS. RESULTS: We analyzed 3884 pathology reports of kidney biopsies from 2007 to 2021 and identified 210 patients (5.4%) with HN, with a mean age of 13.78±12.42 years old. Hematuria with proteinuria (53.3%), isolated hematuria (44.2%), and proteinuria with hematuria and increased creatinine (2.5%) were found in these patients. The re-evaluation of EM findings revealed GBM thinning, definite, and suspicious findings of AS in 37.5%, 43.8%, and 18.8% cases, respectively. The most common diagnosis in 32 cases after the IF study was X-linked AS (71.9%), and 6.2% of cases were autosomal recessive AS. TBMN and autosomal dominant AS remained the differential diagnoses in 21.9%. CONCLUSION: It was found that EM is helpful for the primary diagnosis of patients with definite AS. Immunostaining improves the diagnostic sensitivity for the differentiation of those with suspicious EM findings and determines the inheritance pattern. However, a multidisciplinary approach for a subset of cases is required for the best diagnosis and management.


Assuntos
Nefrite Hereditária , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Hematúria/etiologia , Irã (Geográfico)/epidemiologia , Proteinúria , Encaminhamento e Consulta , Biópsia , Rim
10.
Medicine (Baltimore) ; 103(10): e37442, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457557

RESUMO

BACKGROUND: Genetic factors contribute to chronic kidney disease (CKD) and end-stage renal disease (ESRD). Advances in genetic testing have enabled the identification of hereditary kidney diseases, including those caused by LMX1B mutations. LMX1B mutations can lead to nail-patella syndrome (NPS) or nail-patella-like renal disease (NPLRD) with only renal manifestations. CASE PRESENTATION: The proband was a 13-year-old female who was diagnosed with nephrotic syndrome at the age of 6. Then she began intermittent hormone and drug therapy. When she was 13 years old, she was admitted to our hospital due to sudden chest tightness, which progressed to end-stage kidney disease (ESRD), requiring kidney replacement therapy. Whole-Exome Sequencing (WES) results suggest the presence of LMX1B gene mutation, c.737G > T, p.Arg246Leu. Tracing her family history, we found that her father, grandmother, uncle and 2 cousins all had hematuria, or proteinuria. In addition to the grandmother, a total of 9 members of the family performed WES. The members with kidney involved all carry the mutated gene. Healthy members did not have the mutated gene. It is characterized by co-segregation of genotype and phenotype. We followed the family for 9 year, the father developed ESRD at the age of 50 and started hemodialysis treatment. The rest patients had normal renal function. No extra-renal manifestations associated with NPS were found in any member of the family. CONCLUSIONS: This study has successfully identified missense mutation, c.737G > T (p.Arg246Leu) in the homeodomain, which appears to be responsible for isolated nephropathy in the studied family. The arginine to leucine change at codon 246 likely disrupts the DNA-binding homeodomain of LMX1B. Previous research has documented 2 types of mutations at codon R246, namely R246Q and R246P, which are known to cause NPLRD. The newly discovered mutation, R246L, is likely to be another novel mutation associated with NPLRD, thus expanding the range of mutations at the crucial renal-critical codon 246 that contribute to the development of NPLRD. Furthermore, our findings suggest that any missense mutation occurring at the 246th amino acid position within the homeodomain of the LMX1B gene has the potential to lead to NPLRD.


Assuntos
Falência Renal Crônica , Síndrome da Unha-Patela , Nefrite Hereditária , Humanos , Feminino , Adolescente , Fatores de Transcrição/genética , Proteínas com Homeodomínio LIM/genética , Nefrite Hereditária/genética , Mutação , Falência Renal Crônica/genética , Falência Renal Crônica/terapia , Códon , China , Proteínas de Homeodomínio/genética
11.
JAMA Ophthalmol ; 142(2): e234735, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358450

RESUMO

This case report discusses the long-term follow-up of a patient with bilateral iridoschisis and Alport syndrome.


Assuntos
Doenças da Íris , Nefrite Hereditária , Humanos , Nefrite Hereditária/complicações , Seguimentos , Doenças da Íris/diagnóstico , Doenças da Íris/etiologia
12.
Kidney Int ; 105(5): 1088-1099, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38382843

RESUMO

Individualized pre-pregnancy counseling and antenatal care for women with chronic kidney disease (CKD) require disease-specific data. Here, we investigated pregnancy outcomes and long-term kidney function in women with COL4A3-5 related disease (Alport Syndrome, (AS)) in a large multicenter cohort. The ALPART-network (mAternaL and fetal PregnAncy outcomes of women with AlpoRT syndrome), an international collaboration of 17 centers, retrospectively investigated COL4A3-5 related disease pregnancies after the 20th week. Outcomes were stratified per inheritance pattern (X-Linked AS (XLAS)), Autosomal Dominant AS (ADAS), or Autosomal Recessive AS (ARAS)). The influence of pregnancy on estimated glomerular filtration rate (eGFR)-slope was assessed in 192 pregnancies encompassing 116 women (121 with XLAS, 47 with ADAS, and 12 with ARAS). Median eGFR pre-pregnancy was over 90ml/min/1.73m2. Neonatal outcomes were favorable: 100% live births, median gestational age 39.0 weeks and mean birth weight 3135 grams. Gestational hypertension occurred during 23% of pregnancies (reference: 'general' CKD G1-G2 pregnancies incidence is 4-20%) and preeclampsia in 20%. The mean eGFR declined after pregnancy but remained within normal range (over 90ml/min/1.73m2). Pregnancy did not significantly affect eGFR-slope (pre-pregnancy ß=-1.030, post-pregnancy ß=-1.349). ARAS-pregnancies demonstrated less favorable outcomes (early preterm birth incidence 3/11 (27%)). ARAS was a significant independent predictor for lower birth weight and shorter duration of pregnancy, next to the classic predictors (pre-pregnancy kidney function, proteinuria, and chronic hypertension) though missing proteinuria values and the small ARAS-sample hindered analysis. This is the largest study to date on AS and pregnancy with reassuring results for mild AS, though inheritance patterns could be considered in counseling next to classic risk factors. Thus, our findings support personalized reproductive care and highlight the importance of investigating kidney disease-specific pregnancy outcomes.


Assuntos
Nefrite Hereditária , Complicações na Gravidez , Nascimento Prematuro , Insuficiência Renal Crônica , Feminino , Humanos , Gravidez , Recém-Nascido , Lactente , Resultado da Gravidez/epidemiologia , Nefrite Hereditária/genética , Peso ao Nascer , Estudos Retrospectivos , Nascimento Prematuro/etiologia , Complicações na Gravidez/epidemiologia , Complicações na Gravidez/genética , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Proteinúria , Aconselhamento
13.
Nefrologia (Engl Ed) ; 44(1): 69-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38418364

RESUMO

BACKGROUND AND OBJECTIVE: Hereditary kidney diseases (HKD) are a frequent cause of chronic kidney disease, and their diagnosis has increased since the introduction of next generation sequencing (NGS). In 2018, the Multidisciplinary Unit for Hereditary Kidney Diseases of the Region of Murcia (UMERH-RM) was founded based on the genetic study of HKD. The objective of this study is to analyze the results obtained in the first 3 years of operation, and to analyze the clinical factors associated to a final genetic diagnosis. MATERIALS AND METHODS: All the patients studied with the HKD gene panel were included. The characteristics between those who obtained a final genetic diagnosis and those who did not were compared. RESULTS: A total of 360 patients were studied, detecting genetic variants in 164 not related patients (45.6%). 45 of these were variants of uncertain significance requiring a family co-segregation study, which was facilitated by the multidisciplinary unit. Overall, considering the results obtained with the NGS panel and the extended genomic studies, a final diagnostic yield of HRD of 33.3% (120/360) was achieved, and including incidental findings 35.6% (128/360). Two hundred and twenty-three patients with suspected Alport syndrome were studied. Diagnosis was confirmed in 28.5% (COL4A4 most frequent gene), more frequently women with an obvious compatible family history. They also had frequently microhematuria, although 5 patients without microhematuria confirmed the diagnosis. There were no differences in age, proteinuria, renal function, hearing loss, or ophthalmologic abnormalities. The most frequent finding in the renal biopsy was mesangial proliferation. We estimate that 39 patients avoided renal biopsy. A total of 101 patients with suspected PKD were also studied, 49.5% had a conclusive genetic result (most frequent gene PKD1), more frequently women, with larger kidney sizes (although 9 patients with normal kidney size confirmed diagnosis). Again, the most predictive characteristic of genetic outcome was family history. CONCLUSIONS: The implementation of an NGS panel for HKD, together with the multidisciplinary approach to cases, has improved the diagnostic performance of HKD. In our sample, autosomal dominant Alport syndrome is of highest incidence. Ophthalmological and auditory examinations did not contribute to the diagnosis. We have seen a significant decrease in the indication of renal biopsies thanks to molecular diagnosis. The multidisciplinary approach, with the active participation of nephrologists, paediatricians, clinical and molecular geneticists, with insistence on adequate patient phenotyping and review of their family history, offers a better interpretation of genetic variants, allowing reclassification of the diagnosis of some nephropathies, thus improving their management and genetic advice.


Assuntos
Nefrite Hereditária , Humanos , Feminino , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Rim/patologia , Hematúria
14.
Am J Pathol ; 194(5): 641-655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309427

RESUMO

Alport syndrome is an inherited kidney disease, which can lead to glomerulosclerosis and fibrosis, as well as end-stage kidney disease in children and adults. Platelet-derived growth factor-D (PDGF-D) mediates glomerulosclerosis and interstitial fibrosis in various models of kidney disease, prompting investigation of its role in a murine model of Alport syndrome. In vitro, PDGF-D induced proliferation and profibrotic activation of conditionally immortalized human parietal epithelial cells. In Col4a3-/- mice, a model of Alport syndrome, PDGF-D mRNA and protein were significantly up-regulated compared with non-diseased wild-type mice. To analyze the therapeutic potential of PDGF-D inhibition, Col4a3-/- mice were treated with a PDGF-D neutralizing antibody. Surprisingly, PDGF-D antibody treatment had no effect on renal function, glomerulosclerosis, fibrosis, or other indices of kidney injury compared with control treatment with unspecific IgG. To characterize the role of PDGF-D in disease development, Col4a3-/- mice with a constitutive genetic deletion of Pdgfd were generated and analyzed. No difference in pathologic features or kidney function was observed in Col4a3-/-Pdgfd-/- mice compared with Col4a3-/-Pdgfd+/+ littermates, confirming the antibody treatment data. Mechanistically, lack of proteolytic PDGF-D activation in Col4a3-/- mice might explain the lack of effects in vivo. In conclusion, despite its established role in kidney fibrosis, PDGF-D, without further activation, does not mediate the development and progression of Alport syndrome in mice.


Assuntos
Nefrite Hereditária , Animais , Camundongos , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Fibrose , Rim/patologia , Camundongos Knockout , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fator de Crescimento Derivado de Plaquetas/uso terapêutico
15.
Am J Physiol Renal Physiol ; 326(5): F751-F767, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385175

RESUMO

Conduit arterial disease in chronic kidney disease (CKD) is an important cause of cardiac complications. Cardiac function in CKD has not been studied in the absence of arterial disease. In an Alport syndrome model bred not to have conduit arterial disease, mice at 225 days of life (dol) had CKD equivalent to humans with CKD stage 4-5. Parathyroid hormone (PTH) and FGF23 levels were one log order elevated, circulating sclerostin was elevated, and renal activin A was strongly induced. Aortic Ca levels were not increased, and vascular smooth muscle cell (VSMC) transdifferentiation was absent. The CKD mice were not hypertensive, and cardiac hypertrophy was absent. Freshly excised cardiac tissue respirometry (Oroboros) showed that ADP-stimulated O2 flux was diminished from 52 to 22 pmol/mg (P = 0.022). RNA-Seq of cardiac tissue from CKD mice revealed significantly decreased levels of cardiac mitochondrial oxidative phosphorylation genes. To examine the effect of activin A signaling, some Alport mice were treated with a monoclonal Ab to activin A or an isotype-matched IgG beginning at 75 days of life until euthanasia. Treatment with the activin A antibody (Ab) did not affect cardiac oxidative phosphorylation. However, the activin A antibody was active in the skeleton, disrupting the effect of CKD to stimulate osteoclast number, eroded surfaces, and the stimulation of osteoclast-driven remodeling. The data reported here show that cardiac mitochondrial respiration is impaired in CKD in the absence of conduit arterial disease. This is the first report of the direct effect of CKD on cardiac respiration.NEW & NOTEWORTHY Heart disease is an important morbidity of chronic kidney disease (CKD). Hypertension, vascular stiffness, and vascular calcification all contribute to cardiac pathophysiology. However, cardiac function in CKD devoid of vascular disease has not been studied. Here, in an animal model of human CKD without conduit arterial disease, we analyze cardiac respiration and discover that CKD directly impairs cardiac mitochondrial function by decreasing oxidative phosphorylation. Protection of cardiac oxidative phosphorylation may be a therapeutic target in CKD.


Assuntos
Cardiomegalia , Fator de Crescimento de Fibroblastos 23 , Miocárdio , Insuficiência Renal Crônica , Animais , Fator de Crescimento de Fibroblastos 23/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Modelos Animais de Doenças , Ativinas/metabolismo , Ativinas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Camundongos , Masculino , Fosforilação Oxidativa , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Nefrite Hereditária/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Hormônio Paratireóideo/metabolismo
16.
Mol Genet Genomic Med ; 12(2): e2395, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400605

RESUMO

BACKGROUND: X-linked Alport syndrome (XLAS) is an inherited renal disease caused by rare variants of COL4A5 on chromosome Xq22. Many studies have indicated that single nucleotide variants (SNVs) in exons can disrupt normal splicing process of the pre-mRNA by altering various splicing regulatory signals. The male patients with XLAS have a strong genotype-phenotype correlation. Confirming the effect of variants on splicing can help to predict kidney prognosis. This study aimed to investigate whether single nucleotide substitutions, located within three bases at the 5' end of the exons or internal position of the exons in COL4A5 gene, cause aberrant splicing process. METHODS: We analyzed 401 SNVs previously presumed missense and nonsense variants in COL4A5 gene by bioinformatics programs and identified candidate variants that may affect the splicing of pre-mRNA via minigene assays. RESULTS: Our study indicated three of eight candidate variants induced complete or partial exon skipping. Variants c.2678G>C and c.2918G>A probably disturb classic splice sites leading to corresponding exon skipping. Variant c.3700C>T may disrupt splicing enhancer motifs accompanying with generation of splicing silencer sequences resulting in the skipping of exon 41. CONCLUSION: Our study revealed that two missense variants positioned the first nucleotides of the 5' end of COL4A5 exons and one internal exonic nonsense variant caused aberrant splicing. Importantly, this study emphasized the necessity of assessing the effects of SNVs at the mRNA level.


Assuntos
Nefrite Hereditária , Precursores de RNA , Humanos , Masculino , Mutação , Splicing de RNA , Éxons , Nefrite Hereditária/genética , Bioensaio , Nucleotídeos , Colágeno Tipo IV/genética
17.
Kidney Int ; 105(5): 1049-1057, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401706

RESUMO

Focal segmental glomerulosclerosis (FSGS) lesions have been linked to variants in COL4A3/A4/A5 genes, which are also mutated in Alport syndrome. Although it could be useful for diagnosis, quantitative evaluation of glomerular basement membrane (GBM) type IV collagen (colIV) networks is not widely used to assess these patients. To do so, we developed immunofluorescence imaging for collagen α5(IV) and α1/2(IV) on kidney paraffin sections with Airyscan confocal microscopy that clearly distinguishes GBM collagen α3α4α5(IV) and α1α1α2(IV) as two distinct layers, allowing quantitative assessment of both colIV networks. The ratios of collagen α5(IV):α1/2(IV) mean fluorescence intensities (α5:α1/2 intensity ratios) and thicknesses (α5:α1/2 thickness ratios) were calculated to represent the levels of collagen α3α4α5(IV) relative to α1α1α2(IV). The α5:α1/2 intensity and thickness ratios were comparable across all 11 control samples, while both ratios were significantly and markedly decreased in all patients with pathogenic or likely pathogenic Alport COL4A variants, supporting validity of this approach. Thus, with further validation of this technique, quantitative measurement of GBM colIV subtype abundance by immunofluorescence, may potentially serve to identify the subgroup of patients with FSGS lesions likely to harbor pathogenic COL4A variants who could benefit from genetic testing.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrite Hereditária , Humanos , Membrana Basal Glomerular/patologia , Colágeno Tipo IV/genética , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Parafina , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Membrana Basal/patologia
19.
Artigo em Chinês | MEDLINE | ID: mdl-38297848

RESUMO

Objective:To investigate long-term auditory changes and characteristics of Alport syndrome(AS) patients with different degrees of renal injury. Methods:Retrospectively analyzing clinical data of patients diagnosed AS from January 2007 to September 2022, including renal pathology, genetic detection and hearing examination. A long-term follow-up focusing on hearing and renal function was conducted. Results:This study included 70 AS patients, of which 33(25 males, 8 females, aged 3.4-27.8 years) were followed up, resulting in a loss rate of 52.9%.The follow-up period ranged from 1.1to 15.8 years, with 16 patients followed-up for over 10 years. During the follow-up, 10 patients presenting with hearing abnormalities at the time of diagnosis of AS had progressive hearing loss, and 3 patients with new hearing abnormalities were followed up, which appeared at 5-6 years of disease course. All of which were sensorineural deafness. While only 3 patients with hearing abnormalities among 13 patients received hearing aid intervention. Of these patients,7 developed end-stage renal disease(ESRD), predominantly males (6/7). The rate of long-term hearing loss was significantly different between ESRD group and non-ESRD group(P=0.013). There was no correlation between the progression of renal disease and long-term hearing level(P>0.05). kidney biopsies from 28 patients revealed varying degrees of podocyte lesion and uneven thickness of basement membrane. The severity of podocyte lesion was correlated with the rate of long-term hearing loss(P=0.048), and there was no correlation with the severity of hearing loss(P>0.05). Among 11 cases, theCOL4A5mutationwas most common (8 out of 11), but there was no significant correlation between the mutation type and hearing phenotype(P>0.05). Conclusion:AS patients exhibit progressive hearing loss with significant heterogeneity over the long-term.. THearing loss is more likely to occur 5-6 years into the disease course. Hearing abnormalities are closely related to renal disease status, kidney tissue pathology, and gene mutations, emphasizing the need for vigilant long-term hearing follow-up and early intervention.


Assuntos
Surdez , Perda Auditiva , Falência Renal Crônica , Nefrite Hereditária , Masculino , Criança , Feminino , Humanos , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Estudos Retrospectivos , Rim , Perda Auditiva/genética , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Mutação
20.
Clin Genet ; 105(4): 406-414, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38214412

RESUMO

Alport syndrome (AS) shows a broad phenotypic spectrum ranging from isolated microscopic hematuria (MH) to end-stage kidney disease (ESKD). Monoallelic disease-causing variants in COL4A3/COL4A4 have been associated with autosomal dominant AS (ADAS) and biallelic variants with autosomal recessive AS (ARAS). The aim of this study was to analyze clinical and genetic data regarding a possible genotype-phenotype correlation in individuals with disease-causing variants in COL4A3/COL4A4. Eighty-nine individuals carrying at least one COL4A3/COL4A4 variant classified as (likely) pathogenic according to the American College of Medical Genetics guidelines and current amendments were recruited. Clinical data concerning the prevalence and age of first reported manifestation of MH, proteinuria, ESKD, and extrarenal manifestations were collected. Individuals with monoallelic non-truncating variants reported a significantly higher prevalence and earlier diagnosis of MH and proteinuria than individuals with monoallelic truncating variants. Individuals with biallelic variants were more severely affected than those with monoallelic variants. Those with biallelic truncating variants were more severely affected than those with compound heterozygous non-truncating/truncating variants or individuals with biallelic non-truncating variants. In this study an association of heterozygous non-truncating COL4A3/COL4A4 variants with a more severe phenotype in comparison to truncating variants could be shown indicating a potential dominant-negative effect as an explanation for this observation. The results for individuals with ARAS support the, still scarce, data in the literature.


Assuntos
Colágeno Tipo IV , Nefrite Hereditária , Humanos , Mutação , Colágeno Tipo IV/genética , Autoantígenos/genética , Nefrite Hereditária/diagnóstico , Hematúria/genética , Proteinúria/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...